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Background and Motivation



i RESEARCH BACKGROUND

* Drones have been widely used in real world
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i RESEARCH BACKGROUND

Self-navigation based on deep learning

« Capture images and call a DNN model to export navigation

decisions

 DNN’s outputs are sent to the drone for execution, forming a

closed loop of control
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A typical control loop for navigation [1]
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[1] A. Loquercio, A. I. Maqueda, C. R. Del-Blanco, and D. Scaramuzza, “Dronet: Learning to fly by driving,” IEEE RA-L, vol. 3, no. 2, pp. 1088-1095, 2018.



i RESEARCH BACKGROUND

Challenge 1: Constrained computing capability of drones

* Yielding high computing latency when performing DNN inference

Challenge 2: Drone’s navigation is latency-sensitive

« Delayed navigation decision may lead the drone to an unexpected crash
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i RESEARCH BACKGROUND
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As the end-to-end latency of
navigation decision increases,
the achieved flight distance

dramatically decreases
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i RESEARCH BACKGROUND
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i MOTIVATION

« Designing a framework for edge-assisted drone to optimize existing
deep learning-based navigation techniques to improve the navigation

performance

Local computing

Edge
computing




Problem Analyst and Method



FB) PROBLEM ANALYST

« Treat adaptive navigation as a service
« Define Quality of Navigation (QoN), a new metric which can effectively

shape the navigation performance in terms of end-to-end latency and

model accuracy
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F3 PROBLEM ANALYST

Definition of Quality of Navigation(QoN)

« At any time t, the drone receives the model prediction on the
turning angle 65,
* 6, is based on the scene at some previous moment t,,,

. Hgtt: ground truth of the current scene attime ¢t

T: number of times that 6;,., are received in a time period

|91§re o 85t| = 5(1)

T
QoN = Ztldegre ARV:

where I(-) is an indicator function

11



F3 PROBLEM ANALYST

Goal: Maximize QoN

« Configuration 1: Inference execution location (Local or edge)

« Configuration 2: Compression ratio. Tune the trade off between

data size and image’s quality when offloading

« Configuration 3: Input resolution. Resize the input image to a lower

resolution to reduce the computation workload.
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F3 PROBLEM ANALYST

Enable dynamic input resolution

* We leverage the Spatial Pyramid Pooling mechanism
* |t enables the model to input arbitrary resolution, and the

computational complexity of the model is proportional to the input

resolution
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Architecture of navigation model with spatial pyramid pooling



FB) PROBLEM ANALYST

Challenges of Scheduling Adaptive Navigation
1. Composite optimization objective
2. Complex nexus of schedulable configurations

3. Dynamic environmental information
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F3 PROBLEM ANALYST

Dynamic environmental information
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The measured Quality of Navigation varies in different routes with

respect to the changes of resolution (left) and end-to-end latency (right).
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FB OPTIMIZATION METHOD

DRL Neural Scheduler

« State: Outputs of navigation model, bandwidth, edge computing resource

« Action: Schedulable configurations

 Reward: Quality of Navigation
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Navigation results & resources measurements
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FB OPTIMIZATION METHOD

Reward

Y
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Navigation results & resources measurements

e Scheduler needs to deal with dynamic environmental information

« Original state cannot directly characterize this information

Environmental Information Encoding

1. Environment complexity: Reflect how sensitive the QoN is to the
change of input resolutions

2. Environment dynamics: Characterize how rapidly the content of

captured images changes 17



FB OPTIMIZATION METHOD

Environment complexity c

* 64, p,: Model output corresponding to images in the highest resolution
* 6;,p;: Model output corresponding to images in the lowest resolution
¢ =10p — 6| + alpr — il

a IS a hyper-parameter that keeps 6 and p at the same order of magnitude

Environment dynamics d

* 0, p: Model outputs within the latest navigation epoch

d=0(0)+ po(p)
o(+) reckons the standard deviation
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Framework Design and Evaluation
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ED FRAMEWORK DESIGN

AdaDrone framework overview

— Data Flow
---% Control Flow Dynamic Sync
Profiler State Profile
v |
Navigation | Frames Dynamic
1—
Model Profiler
5 : Ll
| Neural Navigation
L Scheduler Framep Model
React Flight | _______________. [ N R |
Controller
Drone Edge Server

Environment

20



ED Evaluation

« Validate the performance of AdaDrone in AirSim drone simulator
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ED Evaluation

Baselines

* Local: Place the navigation model on the onboard computing device
for execution at any moment

« Offload: Place the navigation model on the server for execution at any
moment

« Dynamic Offload: Merely optimizes QoN by adapting the inference

execution location
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ED Evaluation

Case study

* We investigate how AdaDrone makes dynamic decisions
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Selection of three decision variables of AdaDrone
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ED Evaluation

Performance of DRL Neural Scheduler
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