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Background and Motivation
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1 RESEARCH BACKGROUND

• Drones have been widely used in real world

Disaster rescue Smart agriculture Delivery services

The need for drone 

autonomy

Development of deep 

learning

+
promote Self-navigation 

technology for 

drone
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Self-navigation based on deep learning

• Capture images and call a DNN model to export navigation 

decisions

• DNN’s outputs are sent to the drone for execution, forming a 

closed loop of control

1 RESEARCH BACKGROUND

A typical control loop for navigation [1]

[1] A. Loquercio, A. I. Maqueda, C. R. Del-Blanco, and D. Scaramuzza, “Dronet: Learning to fly by driving,” IEEE RA-L, vol. 3, no. 2, pp. 1088–1095, 2018. 
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Challenge 1: Constrained computing capability of drones

• Yielding high computing latency when performing DNN inference

Challenge 2: Drone’s navigation is latency-sensitive

• Delayed navigation decision may lead the drone to an unexpected crash

1 RESEARCH BACKGROUND
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1 RESEARCH BACKGROUND

As the end-to-end latency of 

navigation decision increases, 

the achieved flight distance 

dramatically decreases

End-to-end latency of 

offloading and local execution, 

where the offloading latency 

breaks down in communication 

and computation
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Constrained 

computing 

capability

Latency-

sensitive taskConflict

Edge computing

1 RESEARCH BACKGROUND

Promote
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• Designing a framework for edge-assisted drone to optimize existing 

deep learning-based navigation techniques to improve the navigation 

performance

1 MOTIVATION
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Problem Analyst and Method
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• Treat adaptive navigation as a service

• Define Quality of Navigation (QoN), a new metric which can effectively 

shape the navigation performance in terms of end-to-end latency and 

model accuracy

2 PROBLEM ANALYST

TimeEnd-to-end 

latency

Model 

prediction

Ground truth

QoN

𝑡
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2 PROBLEM ANALYST

Definition of Quality of Navigation(QoN)

• At any time 𝑡, the drone receives the model prediction on the 

turning angle 𝜃𝑝𝑟𝑒
𝑡

• 𝜃𝑝𝑟𝑒
𝑡 is based on the scene at some previous moment 𝑡𝑝𝑟𝑒

• 𝜃𝑔𝑡
𝑡 : ground truth of the current scene at time 𝑡

• 𝜏: number of times that 𝜃𝑝𝑟𝑒
𝑡 are received in a time period

𝜃𝑝𝑟𝑒
𝑡 − 𝜃𝑔𝑡

𝑡 ≤ 𝜀 1

𝑄𝑜𝑁 =
𝑡

𝜏

𝐼( 𝜃𝑝𝑟𝑒
𝑡 − 𝜃𝑔𝑡

𝑡 ≤ 𝜀)/𝜏

where 𝐼(·) is an indicator function
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Goal: Maximize QoN

• Configuration 1: Inference execution location (Local or edge)

• Configuration 2: Compression ratio. Tune the trade off between 

data size and image’s quality when offloading

• Configuration 3: Input resolution. Resize the input image to a lower 

resolution to reduce the computation workload.

2 PROBLEM ANALYST

Inference execution location

Compression ratio

Input resolution

Maximize
QoN
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2 PROBLEM ANALYST

Enable dynamic input resolution

• We leverage the Spatial Pyramid Pooling mechanism

• It enables the model to input arbitrary resolution, and the 

computational complexity of the model is proportional to the input 

resolution

Architecture of navigation model with spatial pyramid pooling
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Challenges of Scheduling Adaptive Navigation

1. Composite optimization objective

2. Complex nexus of schedulable configurations

3. Dynamic environmental information

2 PROBLEM ANALYST
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2 PROBLEM ANALYST

The measured Quality of Navigation varies in different routes with 

respect to the changes of resolution (left) and end-to-end latency (right).

Dynamic environmental information
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2 OPTIMIZATION METHOD

DRL Neural Scheduler

• State: Outputs of navigation model, bandwidth, edge computing resource

• Action: Schedulable configurations

• Reward: Quality of Navigation
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2 OPTIMIZATION METHOD

• Scheduler needs to deal with dynamic environmental information

• Original state cannot directly characterize this information

Environmental Information Encoding

1. Environment complexity: Reflect how sensitive the QoN is to the 

change of input resolutions

2. Environment dynamics: Characterize how rapidly the content of 

captured images changes 17



2 OPTIMIZATION METHOD

Environment complexity 𝒄

• 𝜃ℎ, 𝑝ℎ: Model output corresponding to images in the highest resolution

• 𝜃𝑙 , 𝑝𝑙: Model output corresponding to images in the lowest resolution

𝑐 = 𝜃ℎ − 𝜃𝑙 + 𝛼|𝑝ℎ − 𝑝𝑙|

𝛼 is a hyper-parameter that keeps 𝜃 and 𝑝 at the same order of magnitude

Environment dynamics 𝒅

• 𝜽, 𝒑: Model outputs within the latest navigation epoch

𝑑 = 𝜎(𝜽) + 𝛽𝜎(𝒑)

𝜎(·) reckons the standard deviation
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Framework Design and Evaluation
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3 FRAMEWORK DESIGN

AdaDrone framework overview
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3 Evaluation

• Validate the performance of AdaDrone in AirSim drone simulator

AdaDrone integration with AirSim
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3 Evaluation
Baselines

• Local: Place the navigation model on the onboard computing device 

for execution at any moment

• Offload: Place the navigation model on the server for execution at any 

moment

• Dynamic Offload: Merely optimizes QoN by adapting the inference 

execution location
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3 Evaluation

Case study

• We investigate how AdaDrone makes dynamic decisions

Trajectories of bandwidth, environment complexity and dynamics

Selection of three decision variables of AdaDrone
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3 Evaluation

Performance of DRL Neural Scheduler

The training curves of the 

neural scheduler with 

different DRL algorithms

The memory footprint of 

the neural scheduler and 

the navigation model
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THANK YOU
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