Fograph: Enabling Real-Time Deep Graph Inference with Fog Computing

Liekang Zeng, Peng Huang, Ke Luo, Xiaoxi Zhang, Zhi Zhou, Xu Chen

Sun Yat-sen University

Ubiquitous Graphs in Real-World

Credit: Google Image

Graph Neural Networks

- Neural message passing framework
 - Each vertex aggregates features of its neighbors
 - *Update* its feature by combining the aggregation through a neural network operator

Analytics with Graph Neural Networks

- Why use GNNs?
 - High classification accuracy
 - Superior **generality** for diverse graphs
 - Advanced **expressiveness** to interpret topology

- What applications?
 - Graph prediction: traffic flow forecasting
 - Link prediction: locationsbased social recommendation
 - Node classification: power grid failure detection

Status Quo of GNN Serving

- Cloud-based GNN serving
 - Data generation from geodistributed end devices
 - Data collection through fog nodes and wide-area network
 - GNN processing at a centralized cloud server

Status Quo of GNN Serving

Cloud-based GNN serving

Avoiding remote Internet can reduce at most **53.2%** latency

Status Quo of GNN Serving

Cloud-based GNN serving

Avoiding remote Internet can reduce at most **53.2%** latency

Fograph

- The first fog-enabled distributed GNN inference system
 - Efficient distributed execution with resource-aware inference execution planning
 - Communication-effective data collection via GNN-specific compression
 - Better performance: outperform existing cloud serving by up to 5.39x speedup

Workflow

Metadata Registration

- Goal
 - Provision fundamental model configurations
 - Characterize the heterogeneity of fog nodes
- Metadata
 - Device-independent: Parameters determined in a trained given GNN model
 - Adjacency matrix, size of feature vectors, etc.
 - Device-dependent: Computing capability profiles specific to each fog node
 - A regression-based latency estimation model that accepts a graph and predicts its execution latency

ollection and

Graph Data

Collection

Distributed

Execution

Planning

 Goal: optimize end-to-end latency for data collection and distributed execution

Inference Exec. Planning

• Decide a *graph data placement* to direct the data flow from end devices to fog nodes

 Goal: optimize end-to-end latency for data collection and distributed execution

The corresponding problem is NP-hard!

 Insight 1: Efficient distributed execution desires load balance and minimized cross-server data exchange

Locality-preserved graph partitioning

 Insight 2: Efficient placement requires jointly considering fog nodes' computing capabilities and available bandwidth

Resource-aware partition-fog mapping

- Inference Execution Planning Algorithm
 - Key 1: Locality-preserved graph partitioning

- Inference Execution Planning Algorithm
 - Key 1: Locality-preserved graph partitioning
 - Key 2: Resource-aware partition-fog mapping

- Inference Execution Planning Algorithm
 - Key 1: Locality-preserved graph partitioning
 - Key 2: Resource-aware partition-fog mapping

- Inference Execution Planning Algorithm
 - Key 1: Locality-preserved graph partitioning
 - Key 2: Resource-aware partition-fog mapping

Output: a resource-aware data placement

Data Collection

- Goal: Communication-effective data transmission
 - **Quantization:** Degree-aware quantization

Data Collection

- Quantization: Degree-aware quantization
 - GNNs are resilient to low-precision representation [Tailor, et al.]
 - A vertex with a higher degree is more robust to low bit widths [Feng, et al.]

[Tailor, et al.] Degree-Quant: quantization-aware training for graph neural networks, ICLR 2020. [Feng, et al.] SGQuant: Squeezing the last bit on graph neural networks with specialized quantization, ICTAI 2020.

Data Collection

- Quantization: Degree-aware quantization
 - GNNs are resilient to low-precision representation [Tailor, et al.]
 - A vertex with a higher degree is more robust to low bit widths [Feng, et al.]
- **Compression:** Sparsity elimination
 - A major fraction of feature vectors are sparse
 - The sparsity is further magnified by precision reduction after quantization

Distributed Execution

- Computation
 - Bulk Synchronous Parallel model for iterative layer processing
- Communication
 - Neighbor data exchange through message passing across fog nodes

Evaluation

- Models: GCN, GAT, GraphSAGE
- Baselines: cloud serving, vanilla fog serving
- Datasets

Dataset	Vertex	Edge	Feature	Label	Duration
SIoT	16216	146117	52	2	1
Yelp	10000	15683	100	2	1
PeMS	307	340	3	N/A	12

Testbed

Туре	Processor	Memory	Capability	
Cloud	8vCPUs & Tesla V100 GPU	32GB	Highly Powerful	
Fog A	3.40GHz 8-Core Intel i7-6700	4GB	Weak	
Fog B	3.40GHz 8-Core Intel i7-6700	8GB	Moderate	
Fog C	3.70GHz 16-Core Xeon W-2145	32GB	Powerful	

Performance Comparison

- Six fog nodes: 1xA, 4xB, 1xC
- Latency reduction up to 82.18% and 63.70% for SIoT and Yelp
- Throughput improvement up to 6.84x and 2.31x for SIoT and Yelp

Case Study

- Traffic flow forecasting with ASTGCN model and PeMS dataset
- Four fog nodes: 1xA, 2xB, 1xC
- Heterogeneity-aware data placement
- Inference speedup up to 2.79x and 1.43x over cloud and fog

Sensor distribution

Accuracy Results

- Minimal accuracy drops by <0.1% for SIoT and Yelp
- **Tiny error expansion** of ~0.1 for traffic flow forecasting

Method	SIoT (%)			Yelp (%)		
	GCN	GAT	SAGE	GCN	GAT	SAGE
Cloud	89.98	86.08	95.50	92.19	86.30	91.73
Fog	89.98	86.08	95.50	92.19	86.30	91.73
Fograph	89.97	86.08	95.48	92.12	86.20	91.70

Inference accuracy on SIoT and Yelp

Traffic flow forecasting errors

Method	15min			30min		
	MAE	RMSE	MAPE	MAE	RMSE	MAPE
Cloud	17.71	29.92	11.84	18.66	30.97	12.27
Fog	17.71	29.92	11.84	18.66	30.97	12.27
Fograph	17.75	30.05	11.93	18.73	31.12	12.38
Uni. 8-bit	18.79	30.26	12.97	19.74	32.01	13.38

Fograph

- The first fog-enabled distributed GNN inference system
 - Efficient distributed execution with resource-aware inference planning
 - Communication-effective data collection via GNN-specific compression
 - Better performance: outperform existing cloud serving by 5.39x speedup

Thanks!

• Liekang Zeng, Peng Huang, Ke Luo, Xiaoxi Zhang, Zhi Zhou, Xu Chen

zenglk3@mail2.sysu.edu.cn, Sun Yat-sen University

