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Ubiquitous Graphs in Real-World
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Graph Neural Networks

* Neural message passing framework
* Each vertex aggregates features of its neighbors

* Update its feature by combining the aggregation through a neural
network operator
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Analytics with Graph Neural Networks
* Why use GNNSs? * What applications?

* Graph prediction: traffic flow

* High classification accuracy forecasting

* Superior generality for diverse

graphs * Link prediction: |ocations-

based soclal recommendation

* Advanced expressiveness to

interpret topology * Node classification: power grid

fallure detection



Status Quo of GNN Serving
* Cloud-based GNN serving

from geo-
distributed end devices

through fog
nodes and wide-area network
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Status Quo of GNN Serving

* Cloud-based GNN serving

[ Cloud serving
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Status Quo of GNN Serving

* Cloud-based GNN serving

Can we serve GNN inference
with distributed fog nodes?

1 Cloud serving
[ Single fog node
B Multiple fog node
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Fograph
* The first fog-enabled distributed GNN inference system

with resource-aware inference
execution planning

via GNN-specific
compression

outperform existing cloud serving by up to 5.39x
speedup



Fograph Overview

. Workflow

Metadata Execution
Registration Planning

Graph Data Distributed
Collection Execution
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. ' Metadata
Metadata Registration

* Goal
* Provision fundamental model configurations
* Characterize the heterogeneity of fog nodes

* Metadata

* Device-independent: Parameters determined in a trained given GNN
model
* Adjacency matrix, size of feature vectors, etc.
* Device-dependent: Computing capability profiles specific to each fog
node

* Aregression-based latency estimation model that accepts a graph and predicts its
execution latency
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Inference Exec. Planning

* Goal: optimize end-to-end latency for data collection and
distributed execution

* Decide a graph data placement to direct the data flow from end devices
to fog nodes

Data

Placement

Fog network
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Inference Exec. Planning

* Goal: optimize end-to-end latency for data collection and
distributed execution

* Insight 1: Efficient distributed execution desires load balance and
minimized cross-server data exchange

» Locality-preserved graph partitioning

* Insight 2: Efficient placement requires jointly considering fog nodes’
computing capabilities and available bandwidth

» Resource-aware partition-fog mapping
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Inference Exec. Planning

* Inference Execution Planning Algorithm
* Key 1: Locality-preserved graph partitioning

Balanced graph
partltlonlng solver

Execution
Planning
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Inference Exec. Planning

* Inference Execution Planning Algorithm
* Key 1: Locality-preserved graph partitioning
* Key 2: Resource-aware partition-fog mapping

Greedy min-weight
mapping

Partitions  Fogs 7 A
(Py. f)
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Inference Exec. Planning

* Inference Execution Planning Algorithm
* Key 1: Locality-preserved graph partitioning
* Key 2: Resource-aware partition-fog mapping

(Pk,fj) = Data Collection Latency + Computation Latency
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Inference Exec. Planning

* Inference Execution Planning Algorithm
* Key 1: Locality-preserved graph partitioning
* Key 2: Resource-aware partition-fog mapping

Output: a resource-aware data placement
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Data Collection

* Goal: Communication-effective data transmission

* Quantization: Degree-aware guantization

Quantization &
Compression
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. Graph Data
Data Collection

* Quantization: Degree-aware quantization
* GNNs are resilient to low-precision representation [Tailor, et al]
* A vertex with a higher degree is more robust to low bit widths [Feng, et al]

D D,
Vertex Degree

[Tailor, et al.] Degree-Quant: quantization-aware training for graph neural networks, ICLR 2020.
[Feng, et al.] SGQuant: Squeezing the last bit on graph neural networks with specialized quantization, ICTAI 2020.
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Data Collection

* Quantization: Degree-aware quantization
* GNNs are resilient to low-precision representation [Tailor, et al]
* A vertex with a higher degree is more robust to low bit widths [Feng, et al]

* Compression: Sparsity elimination
* A major fraction of feature vectors are sparse
* The sparsity Is further magnified by precision reduction after quantization

Compression
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. . . Distributed
Distributed Execution

* Computation
* Bulk Synchronous Parallel model for iterative layer processing

* Communication
* Neighbor data exchange through message passing across fog nodes
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Fvaluation

* Models: GCN, GAT, GraphSAGE
* Baselines: cloud serving, vanilla fog serving

 Datasets

Dataset | Vertex | Edge | Feature | Label | Duration

SIoT 16216 146117 32 2 1

Yelp 10000 15633 100 2 1

PeMS 307 340 3 N/A 12

* Testbed

Type Processor Memory Capability
Cloud 8vCPUs & Tesla V100 GPU 32GB Highly Powertful
Fog A | 3.40GHz 8-Core Intel i7-6700 4GB Weak
Fog B | 3.40GHz 8-Core Intel i7-6700 8GB Moderate
Fog C | 3.70GHz 16-Core Xeon W-2145 32GB Powerful




Performance Comparison

* Six fog nodes: 1xA, 4xB, 1xC
* Latency reduction up to and for SloT and Yelp
* Throughput improvement up to and for SloT and Yelp
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Case Study

* Traffic flow forecasting with ASTGCN model and PeMS dataset

* Four fog nodes: 1xA, 2xB, 1xC
* Heterogeneity-aware data placement

* Inference speedup up to and over cloud and fog
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Accuracy Results

* Minimal accuracy drops by for SloT and Yelp
* Tiny error expansion of for traffic flow forecasting

Inference accuracy on SloT and Yelp

SIoT (%) Yelp (%)
GCN GAT SAGE | GCN GAT SAGE

Cloud 89.98 86.08 95.50 | 92.19 86.30  91.73
Fog 89.98 86.08 95,50 | 92.19 86.30 91.73
Fograph | 89.97 86.08 9548 | 92.12 86.20 91.70

Method

Traffic flow forecasting errors

15min 30min
MAE RMSE MAPE | MAE RMSE MAPE

Cloud 17.71 29.92 11.84 18.66 30.97 12.27
Fog 17.71 29.92 11.84 18.66 30.97 12.27
Fograph 17.75 30.05 11.93 18.73 31.12 12.38
Uni. 8-bit | 18.79 30.26 12.97 19.74 32.01 13.38

Method




Fograph

* The first fog-enabled distributed GNN inference system
with resource-aware inference planning
via GNN-specific compression
outperform existing cloud serving by 5.39x speedup
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