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Ubiquitous Graphs in Real-World
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Graph Neural Networks 

3

• Neural message passing framework
• Each vertex aggregates features of its neighbors
• Update its feature by combining the aggregation through a neural 

network operator



Analytics with Graph Neural Networks
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• Why use GNNs?

• High classification accuracy

• Superior generality for diverse 
graphs

• Advanced expressiveness to 
interpret topology

• What applications?

• Graph prediction: traffic flow 
forecasting

• Link prediction: locations-
based social recommendation

• Node classification: power grid 
failure detection



Status Quo of GNN Serving

• Cloud-based GNN serving

• Data generation from geo-
distributed end devices

• Data collection through fog 
nodes and wide-area network

• GNN processing at a 
centralized cloud server
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Status Quo of GNN Serving

• Cloud-based GNN serving

6

Bottleneck!

Avoiding remote Internet can 
reduce at most 53.2% latency 



• Cloud-based GNN serving
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Can we serve GNN inference 
with distributed fog nodes?

Status Quo of GNN Serving

Avoiding remote Internet can 
reduce at most 53.2% latency 



Fograph

• The first fog-enabled distributed GNN inference system

• Efficient distributed execution with resource-aware inference 
execution planning

• Communication-effective data collection via GNN-specific 
compression

• Better performance: outperform existing cloud serving by up to 5.39x 
speedup
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Fograph Overview

• Workflow
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Metadata Registration

• Goal
• Provision fundamental model configurations
• Characterize the heterogeneity of fog nodes

• Metadata
• Device-independent: Parameters determined in a trained given GNN 

model
• Adjacency matrix, size of feature vectors, etc.

• Device-dependent: Computing capability profiles specific to each fog 
node
• A regression-based latency estimation model that accepts a graph and predicts its 

execution latency
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Inference Exec. Planning

• Goal: optimize end-to-end latency for data collection and 
distributed execution
• Decide a graph data placement to direct the data flow from end devices 

to fog nodes
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Inference Exec. Planning

• Goal: optimize end-to-end latency for data collection and 
distributed execution

• Insight 1: Efficient distributed execution desires load balance and 
minimized cross-server data exchange

• Insight 2: Efficient placement requires jointly considering fog nodes’ 
computing capabilities and available bandwidth
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The corresponding problem is NP-hard!



Inference Exec. Planning

• Inference Execution Planning Algorithm
• Key 1: Locality-preserved graph partitioning
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Inference Exec. Planning

• Inference Execution Planning Algorithm
• Key 1: Locality-preserved graph partitioning
• Key 2: Resource-aware partition-fog mapping
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Inference Exec. Planning

• Inference Execution Planning Algorithm
• Key 1: Locality-preserved graph partitioning
• Key 2: Resource-aware partition-fog mapping
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Inference Exec. Planning

• Inference Execution Planning Algorithm
• Key 1: Locality-preserved graph partitioning
• Key 2: Resource-aware partition-fog mapping
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Data Collection

• Goal: Communication-effective data transmission

• Quantization: Degree-aware quantization

• Compression: Sparsity elimination
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Data Collection

• Quantization: Degree-aware quantization
• GNNs are resilient to low-precision representation [Tailor, et al.]

• A vertex with a higher degree is more robust to low bit widths [Feng, et al.]
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[Tailor, et al.] Degree-Quant: quantization-aware training for graph neural networks, ICLR 2020.
[Feng, et al.] SGQuant: Squeezing the last bit on graph neural networks with specialized quantization, ICTAI 2020.



Data Collection

• Quantization: Degree-aware quantization
• GNNs are resilient to low-precision representation [Tailor, et al.]

• A vertex with a higher degree is more robust to low bit widths [Feng, et al.]

• Compression: Sparsity elimination
• A major fraction of feature vectors are sparse
• The sparsity is further magnified by precision reduction after quantization
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Distributed Execution

• Computation
• Bulk Synchronous Parallel model for iterative layer processing

• Communication
• Neighbor data exchange through message passing across fog nodes
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Evaluation

• Models: GCN, GAT, GraphSAGE

• Baselines: cloud serving, vanilla fog serving

• Datasets

• Testbed
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Performance Comparison 

• Six fog nodes: 1xA, 4xB, 1xC

• Latency reduction up to 82.18% and 63.70% for SIoT and Yelp

• Throughput improvement up to 6.84x and 2.31x for SIoT and Yelp 
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Case Study

• Traffic flow forecasting with ASTGCN model and PeMS dataset

• Four fog nodes: 1xA, 2xB, 1xC

• Heterogeneity-aware data placement

• Inference speedup up to 2.79x and 1.43x over cloud and fog
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Sensor distribution Latency result



Accuracy Results

• Minimal accuracy drops by <0.1% for SIoT and Yelp

• Tiny error expansion of ~0.1 for traffic flow forecasting
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Inference accuracy on SIoT and Yelp
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Fograph

• The first fog-enabled distributed GNN inference system
• Efficient distributed execution with resource-aware inference planning
• Communication-effective data collection via GNN-specific compression
• Better performance: outperform existing cloud serving by 5.39x speedup
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